3.51 \(\int \frac{\cos ^6(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=73 \[ \frac{\cos ^5(c+d x)}{5 a d}+\frac{\sin (c+d x) \cos ^3(c+d x)}{4 a d}+\frac{3 \sin (c+d x) \cos (c+d x)}{8 a d}+\frac{3 x}{8 a} \]

[Out]

(3*x)/(8*a) + Cos[c + d*x]^5/(5*a*d) + (3*Cos[c + d*x]*Sin[c + d*x])/(8*a*d) + (Cos[c + d*x]^3*Sin[c + d*x])/(
4*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0682715, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2682, 2635, 8} \[ \frac{\cos ^5(c+d x)}{5 a d}+\frac{\sin (c+d x) \cos ^3(c+d x)}{4 a d}+\frac{3 \sin (c+d x) \cos (c+d x)}{8 a d}+\frac{3 x}{8 a} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^6/(a + a*Sin[c + d*x]),x]

[Out]

(3*x)/(8*a) + Cos[c + d*x]^5/(5*a*d) + (3*Cos[c + d*x]*Sin[c + d*x])/(8*a*d) + (Cos[c + d*x]^3*Sin[c + d*x])/(
4*a*d)

Rule 2682

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e
 + f*x])^(p - 1))/(b*f*(p - 1)), x] + Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2), x], x] /; FreeQ[{a, b, e, f, g
}, x] && EqQ[a^2 - b^2, 0] && GtQ[p, 1] && IntegerQ[2*p]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{\cos ^6(c+d x)}{a+a \sin (c+d x)} \, dx &=\frac{\cos ^5(c+d x)}{5 a d}+\frac{\int \cos ^4(c+d x) \, dx}{a}\\ &=\frac{\cos ^5(c+d x)}{5 a d}+\frac{\cos ^3(c+d x) \sin (c+d x)}{4 a d}+\frac{3 \int \cos ^2(c+d x) \, dx}{4 a}\\ &=\frac{\cos ^5(c+d x)}{5 a d}+\frac{3 \cos (c+d x) \sin (c+d x)}{8 a d}+\frac{\cos ^3(c+d x) \sin (c+d x)}{4 a d}+\frac{3 \int 1 \, dx}{8 a}\\ &=\frac{3 x}{8 a}+\frac{\cos ^5(c+d x)}{5 a d}+\frac{3 \cos (c+d x) \sin (c+d x)}{8 a d}+\frac{\cos ^3(c+d x) \sin (c+d x)}{4 a d}\\ \end{align*}

Mathematica [A]  time = 0.783714, size = 141, normalized size = 1.93 \[ -\frac{\left (30 \sqrt{1-\sin (c+d x)} \sin ^{-1}\left (\frac{\sqrt{1-\sin (c+d x)}}{\sqrt{2}}\right )+\sqrt{\sin (c+d x)+1} \left (8 \sin ^5(c+d x)-18 \sin ^4(c+d x)-6 \sin ^3(c+d x)+41 \sin ^2(c+d x)-17 \sin (c+d x)-8\right )\right ) \cos ^7(c+d x)}{40 a d (\sin (c+d x)-1)^4 (\sin (c+d x)+1)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^6/(a + a*Sin[c + d*x]),x]

[Out]

-(Cos[c + d*x]^7*(30*ArcSin[Sqrt[1 - Sin[c + d*x]]/Sqrt[2]]*Sqrt[1 - Sin[c + d*x]] + Sqrt[1 + Sin[c + d*x]]*(-
8 - 17*Sin[c + d*x] + 41*Sin[c + d*x]^2 - 6*Sin[c + d*x]^3 - 18*Sin[c + d*x]^4 + 8*Sin[c + d*x]^5)))/(40*a*d*(
-1 + Sin[c + d*x])^4*(1 + Sin[c + d*x])^(7/2))

________________________________________________________________________________________

Maple [B]  time = 0.06, size = 245, normalized size = 3.4 \begin{align*} -{\frac{5}{4\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{9} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+2\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}}{da \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{5}}}-{\frac{1}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{7} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+4\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}}{da \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{5}}}+{\frac{1}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+{\frac{5}{4\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+{\frac{2}{5\,da} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-5}}+{\frac{3}{4\,da}\arctan \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6/(a+a*sin(d*x+c)),x)

[Out]

-5/4/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^9+2/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^8
-1/2/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^7+4/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^4
+1/2/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)^3+5/4/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5*tan(1/2*d*x+1/2*c)
+2/5/d/a/(1+tan(1/2*d*x+1/2*c)^2)^5+3/4/a/d*arctan(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [B]  time = 1.44425, size = 348, normalized size = 4.77 \begin{align*} \frac{\frac{\frac{25 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{80 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{10 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac{40 \, \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac{25 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} + 8}{a + \frac{5 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{10 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac{10 \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac{5 \, a \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} + \frac{a \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}}} + \frac{15 \, \arctan \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{20 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/20*((25*sin(d*x + c)/(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 80*sin(d*x + c)^4/(cos(d*
x + c) + 1)^4 - 10*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 40*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 25*sin(d*x +
 c)^9/(cos(d*x + c) + 1)^9 + 8)/(a + 5*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 10*a*sin(d*x + c)^4/(cos(d*x +
c) + 1)^4 + 10*a*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 5*a*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + a*sin(d*x + c
)^10/(cos(d*x + c) + 1)^10) + 15*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a)/d

________________________________________________________________________________________

Fricas [A]  time = 1.60331, size = 126, normalized size = 1.73 \begin{align*} \frac{8 \, \cos \left (d x + c\right )^{5} + 15 \, d x + 5 \,{\left (2 \, \cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{40 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/40*(8*cos(d*x + c)^5 + 15*d*x + 5*(2*cos(d*x + c)^3 + 3*cos(d*x + c))*sin(d*x + c))/(a*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6/(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.16256, size = 154, normalized size = 2.11 \begin{align*} \frac{\frac{15 \,{\left (d x + c\right )}}{a} - \frac{2 \,{\left (25 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} - 40 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} + 10 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 80 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 10 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 25 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 8\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{5} a}}{40 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/40*(15*(d*x + c)/a - 2*(25*tan(1/2*d*x + 1/2*c)^9 - 40*tan(1/2*d*x + 1/2*c)^8 + 10*tan(1/2*d*x + 1/2*c)^7 -
80*tan(1/2*d*x + 1/2*c)^4 - 10*tan(1/2*d*x + 1/2*c)^3 - 25*tan(1/2*d*x + 1/2*c) - 8)/((tan(1/2*d*x + 1/2*c)^2
+ 1)^5*a))/d